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January 12, 2011

Abstract

It is shown that the well-known connection between the second order linear dif-
ferential equation h′′+B(z) h = 0, with a solution base {h1, h2}, and the Schwarzian
derivative

Sf =
(

f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

of f = h1/h2, can be extended to the equation h(k) + B(z) h = 0 where k ≥
2. This generalization depends upon an appropriate definition of the generalized
Schwarzian derivative Sk(f) of a function f which is induced by k − 1 ratios of
linearly independent solutions of h(k)+B(z)h = 0. The classRk(Ω) of meromorphic
functions f such that Sk(f) is analytic in a given domain Ω is also completely
described. It is shown that if Ω is the unit disc D or the complex plane C, then the
order of growth of f ∈ Rk(Ω) is precisely determined by the growth of Sk(f), and
vice versa. Also the oscillation of solutions of h(k) + B(z) h = 0, with the analytic
coefficient B in D or C, in terms of the exponent of convergence of solutions is briefly
discussed.

1. Introduction and results

Let D denote the unit disc of the complex plane C, and let M(Ω) and H(Ω) stand for the
sets of all meromorphic and analytic functions in a domain Ω ⊂ C, respectively. If there
is no need to specify the domain, we will simply write f ∈M or f ∈ H.

We say that f ∈M(Ω) belongs to the restricted class R(Ω), if f has only simple poles
and f ′(z) 6= 0 for all z ∈ Ω. As in the case of M, we will write f ∈ R if the domain Ω
does not have to be specified. The Schwarzian derivative of f ∈ R at z is defined as

Sf (z) :=

(
f ′′

f ′

)′
(z)− 1

2

(
f ′′(z)

f ′(z)

)2

=
f ′′′(z)

f ′(z)
− 3

2

(
f ′′(z)

f ′(z)

)2

.
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The Schwarzian derivative Sf measures how much f differs from being a Möbius trans-
formation. In particular, Sf ≡ 0 if and only if f is a Möbius transformation. It is also
clear that Sf ∈ H if f ∈ R. Moreover, if f ∈ M(Ω) and h ∈ H(Ω) is locally univalent
such that h(Ω) ⊂ Ω, then

Sf◦h(z) = Sf (h(z))(h′(z))2 + Sh(z) (1.1)

for all z ∈ Ω.
An important property of the Schwarzian derivative is its well-known connection to

second order linear differential equations.

Theorem A. Let B ∈ H. Then the quotient f := h1/h2 of any linearly independent
solutions h1 and h2 of

h′′ + B(z) h = 0 (1.2)

belongs to R, and Sf = 2B.
Conversely, let f ∈ R and define B := 1

2
S2(f). Then B ∈ H and (1.2) admits linearly

independent solutions h1 and h2 such that f = h1/h2.

Generalized Schwarzian derivatives

Let f ∈M and consider the meromorphic functions defined by the formulas

S2,n(f) :=
f ′′

f ′
, Sk+1,n(f) :=

(
Sk,n(f)

)′ − 1

n

f ′′

f ′
Sk,n(f), n ∈ N, k ∈ N \ {1} ,

and
Sk(f) := Sk+1,k(f), k ∈ N.

Note that the definition of S2,n(f) is independent of n. Then S1(f) is the pre-Schwarzian
derivative of f , and

S2(f) = S3,2(f) =
(f ′′

f ′

)′
− 1

2

(f ′′

f ′

)2

= Sf .

Therefore Sk(f) can be called a generalized Schwarzian derivative of f .
Direct calculations show that

S3(f) =
f (4)

f ′
− 4

(
f ′′′

f ′

)(
f ′′

f ′

)
+

28

9

(
f ′′

f ′

)3

and

S4(f) =
f (5)

f ′
− 5

(
f (4)

f ′

)(
f ′′

f ′

)
+

135

8

(
f (3)

f ′

)(
f
′′

f ′

)2

− 15

4

(
f (3)

f ′

)2

− 585

64

(
f ′′

f ′

)4

.

In each term of S3(f) (resp. S4(f)) the sum of the differences between the orders of the
derivatives in the numerator and the denominator is exactly 3 (resp. 4). Other Schwarzian
derivatives also share this property in the sense that the corresponding sum in the case
of Sk(f) is always k.
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One can find different definitions of higher order Schwarzian derivatives in the existing
literature. In particular, σk+1(f), defined in [19], is closely related to Sk(f). One can show
that each term in σk+1(f) is a constant multiple of the corresponding term in Sk(f), yet
obviously σk+1(f) 6= Sk(f) unless k = 2. The Schwarzians σk+1(f) have nice properties
with regards to compositions of functions whereas the functions Sk(f) do not. Especially,
a formula similar to (1.1) can be established for σk+1(f), see [19, p. 3242]. Another
definition of a generalized Schwarzian derivative can be found in [3]. The definition given
in the present paper appears to give a natural connection to higher order linear differential
equations in the spirit of Theorem A.

Definition 1. Let f ∈ M and k ∈ N. Then f belongs to the k-restricted class Rk, if f ′

can be represented in the form f ′ = 1/hk, where h ∈ H admits the following properties:

(i) zeros of h are at most (k − 1)-fold;

(ii) at each l-fold zero of h all derivatives h(k), . . . , h(k+l−1) vanish.

Condition (ii) in Definition 1 says that if h has an l-fold zero at α, then h(k) has to
have at least an l-fold zero at α. This kind of functions appear naturally in the theory of
differential equations.

Example 1. Every solution h of

h(k) + B(z) h = 0, (1.3)

where B ∈ H, satisfies properties (i) and (ii) in Definition 1. To prove (i), assume on
the contrary that h has an m-fold zero at α, and m ≥ k. Then, in a neighborhood of α,
h(z) = (z−α)m H(z), where H ∈ H and H(α) 6= 0. Therefore h(k)(z) = (z−α)m−k K(z),
where K ∈ H and K(α) 6= 0. As h is a solution of (1.3),

B(z) = −h(k)(z)

h(z)
=

1

(z − α)k

K(z)

H(z)
,

where K/H is analytic in a neighborhood of α and K(α)/H(α) 6= 0. Thus B has a pole
of order k at α, which contradicts the assumption B ∈ H. Property (ii) follows by l − 1
differentiations of (1.3) because B ∈ H.

Obviously R1 is just the class of locally univalent analytic functions. The connection
between the restricted class R and R2 is given in the following lemma whose proof and
other lengthy reasonings are postponed to forthcoming sections.

Lemma 2. The classes R and R2 are equal.

We next give concrete examples of functions in R3 and R4.
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Example 2. Consider the meromorphic function

f1(z) = − 1

5z5
− 1

2z2
, f ′1(z) =

1

z6
+

1

z3
=

1

(h1(z))3
, h1(z) =

z2

(1 + z3)
1
3

,

where h1 ∈ H(D). The zeros of f ′1 are the solutions of z3 = −1, and thus f ′1 does not
vanish in D. Calculations show that

h
(3)
1 (z) = − 20 z2

(1 + z3)
4
3

+
48 z5

(1 + z3)
7
3

− 28 z8

(1 + z3)
10
3

,

h
(4)
1 (z) =

320 z4

(1 + z3)
7
3

− 40 z

(1 + z3)
4
3

− 560 z7

(1 + z3)
10
3

+
280 z10

(1 + z3)
13
3

,

and hence h
(3)
1 (0) = h

(4)
1 (0) = 0. Therefore f1 ∈ R3(D) by Definition 1. Further,

S3(f1)(z) =
60− 24 z3

(1 + z3)3
,

and so S3(f1) ∈ H(D). One can also show that h1 is a solution of (1.3) with k = 3 and
B = 1

3
S3(f1).

Consider the meromorphic function

f2(z) = −1 + 2
√

2 i

9 z3
+

2 +
√

2 i

3 z2
− 1

z
, f ′2(z) =

1 + 2
√

2 i

3 z4
− 4 + 2

√
2 i

3 z3
+

1

z2
,

where

f ′2(z) =
1

(h2(z))4
, h2(z) =

3
1
4 z

((z − 1)(3z − 1− 2
√

2 i))
1
4

.

Now h2 ∈ H(D) and f ′2 is non-vanishing in D since the points 1 and 1+2
√

2 i
3

belong to the

boundary of D. Further, a calculation shows that h
(4)
2 (0) = 0, and hence f2 ∈ R4(D) by

Definition 1. Furthermore, one can check that S4(f2) ∈ H(D) and h2 is a solution of (1.3)
with k = 4 and B = 1

4
S4(f2).

The phenomenon related to differential equations which occurs in Example 2 for the
functions f1 and f2 and their generalized Schwarzian derivatives S3(f1) and S4(f2) is by
no means a casuality. Lemmas 3, 4 and 5 explain the interrelationships between the
generalized Schwarzian derivative Sk(f), the k-restricted class Rk, and linear differential
equations of order k. This connection is further underscored in Theorem 6, which is the
main result of this section.

Lemma 3. Let f ∈M such that f ′ = 1/hk for some h ∈ H, h 6≡ 0, and k ∈ N. Then

Sk(f) = −k
h(k)

h
, (1.4)

and any constant multiple of h = (f ′)−1/k is a solution of

h(k) +
1

k
Sk(f)(z) h = 0. (1.5)
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If f ∈ Rk, then f ′ is of the form f ′ = 1/hk, where h ∈ H. Therefore Lemma 3 connects
the generalized Schwarzian derivative Sk(f) to linear differential equations of order k.

If Pk−1 is a polynomial with deg(Pk−1) ≤ k − 1 and f ′ = (Pk−1)
−k, then Sk(f) ≡ 0 by

Lemma 3. The converse implication is also true.

Lemma 4. Let f ∈ M such that f ′ is non-vanishing, and let k ∈ N. Then Sk(f) ≡ 0 if
and only if f ′ = (Pk−1)

−k, where Pk−1 is a polynomial with deg(Pk−1) ≤ k − 1.

If k = 1, then Lemma 4 simply says that the pre-Schwarzian is identically zero if and
only if f ′ is a non-zero constant. The case k = 2 reduces to the known fact for the classical
Schwarzian derivative since the derivative of a Möbius transformation

f(z) =
az + b

cz + d
is f ′(z) =

(
c√

ad− bc
z +

d√
ad− bc

)−2

,

where ad− bc 6= 0.
The next lemma implies that a function h is a solution of the differential equation

(1.3), with some B ∈ H, if and only if h satisfies the properties (i) and (ii) in Definition 1.

Lemma 5. Let f ∈ M such that f ′ is non-vanishing. Then the following conditions are
equivalent:

(i) f ∈ Rk;

(ii) Sk(f) ∈ H;

(iii) f ′ = 1/hk, where h is a solution of (1.3) with some B ∈ H.

Lemma 5 allows us to describe a natural and large subclass of Rk in terms of the
Laurent series of f ′.

Example 3. Let f ∈ M and k ∈ N. We say that f ∈ R?
k, if f ′ is non-vanishing and it

admits the following properties:

(i) poles of f ′ are of order lk, where l = 1, . . . , k − 1;

(ii) if f ′ has a pole of order lk at α, then its Laurent series in a punctured neighborhood
of α is of the form

f ′(z) =
c−lk

(z − α)lk
+

∞∑

j=−lk+k

cj(z − α)j, c−lk 6= 0.

The class R?
k is a subset of Rk.

By Example 3 the function f1 in Example 2 belongs to R3. Moreover, the function f2

in Example 2 shows that conditions (i) and (ii) above do not characterize the class R4.
The following result generalizes Theorem A for higher order equations. If k = 2, then

the Wronskian determinant W ((h1/h2)
′) is (h1/h2)

′, and hence Theorem 6 with k = 2
reduces to Theorem A.
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Theorem 6. Let {h1, . . . , hk} be a solution base of (1.3) where B ∈ H and k ≥ 2. Then
every primitive function f of the Wronskian determinant

W

((
h1

hk

)′
,

(
h2

hk

)′
, . . . ,

(
hk−1

hk

)′ )
(1.6)

belongs to Rk, and Sk(f) = kB.
Conversely, let f ∈ Rk, k ≥ 2, and define B := 1

k
Sk(f). Then B ∈ H and (1.3) admits

a solution base {h1, . . . , hk} such that f is a primitive function of (1.6).

The first part of Theorem 6 says that the analytic coefficient of (1.3) can be expressed
in terms of k − 1 ratios of linearly independent solutions. An analogous result can be
found in the existing literature. Namely, if {h1, . . . , hk} is a solution base of (1.3), where
B ∈ H, then a special case of [13, Theorem 2.1] yields

B =
k−1∑
j=0

(−1)2k−j Wk−j

Wk

(
k
√

Wk

)(k−j)

k
√

Wk

,

where

Wj =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
h1

hk

)′ (
h2

hk

)′
· · ·

(
hk−1

hk

)′

...
...

. . .
...(

h1

hk

)(j−1) (
h2

hk

)(j−1)

· · ·
(

hk−1

hk

)(j−1)

(
h1

hk

)(j+1) (
h2

hk

)(j+1)

· · ·
(

hk−1

hk

)(j+1)

...
...

. . .
...(

h1

hk

)(k) (
h2

hk

)(k)

· · ·
(

hk−1

hk

)(k)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, j = 1, . . . , k.

This along with the first part of Theorem 6 shows that

Sk(f) = k

k−1∑
j=0

(−1)2k−j Wk−j

Wk

(
k
√

Wk

)(k−j)

k
√

Wk

,

where f is a primitive of the Wronskian (1.6).
Note that the representations of analytic coefficients in terms of k−1 ratios of linearly

independent solutions given in [13, Theorem 2.1] are valid for equations of the form

h(k) + Bk−2(z)h(k−2) + · · ·+ B1(z)h′ + B0(z)h = 0. (1.7)

This suggests that the first part of Theorem 6 should have an analogue for the equa-
tion (1.7). However, apart from the fact that the argument used in the proof of The-
orem 6 does not seem to work for (1.7), we will face other obstacles. Namely, in view
of Lemma 5, it is unclear if each coefficient Bj could be represented in terms of some
generalized Schwarzian derivative of some function f (or some generalized Schwarzian
derivatives of some functions fj), induced by ratios of linearly independent solutions, and
to which restricted class this f (or these fj:s) should belong to. It seems that the def-
inition of Sk(f) is not adequate for this purpose unless all the intermediate coefficients
vanish identically. Neither it is clear how the second part of Theorem 6 should be stated
in the case of (1.7).
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Order of growth via generalized Schwarzian derivatives

We next combine the results from the previous section with known results on differential
equations to characterize finite order functions in Rk(D) and Rk(C) in terms of their
generalized Schwarzian derivatives. To do this, several definitions are needed.

The Nevanlinna characteristic of f ∈M(Ω), where Ω is either D or C, is

T (r, f) := m(r, f) + N(r, f) :=
1

2π

∫ 2π

0

log+ |f(reiθ)| dθ +

∫ r

0

n(t)− n(0)

t
dt + n(0) log r,

where m(r, f) is the proximity function and N(r, f) is the integrated counting function.
The orders of growth of f ∈M(D) and g ∈M(C) are defined as

σ(f) := lim sup
r→1−

log+ T (r, f)

− log(1− r)
and ρ(g) := lim sup

r→∞

log+ T (r, g)

log r
.

The order of growth of f ∈ H(D) is

σM(f) := lim sup
r→1−

log+ log+ M(r, f)

− log(1− r)
,

where M(r, f) := max|z|=r |f(z)|. It is well known that the inequalities σ(f) ≤ σM(f) ≤
σ(f) + 1 are satisfied for all f ∈ H(D).

For p > 0 and q > −1, the weighted Bergman space Ap
q consists of those h ∈ H(D) for

which

‖h‖Ap
q

:=

(∫

D
|h(z)|p(1− |z|2)q dm(z)

) 1
p

< ∞.

Functions of maximal growth in
⋂

α<q<∞ Ap
q are distinguished by denoting h ∈ Ap

α if
α = inf{q > −1 : h ∈ Ap

q}. Moreover, h ∈ H(D) belongs to H∞
p , 0 ≤ p < ∞, if

‖h‖H∞
p

:= sup
z∈D

|h(z)|(1− |z|2)p < ∞,

and f ∈ H∞p if p = inf{q ≥ 0 : f ∈ H∞
q }.

The main results of this section are gathered to the following theorem.

Theorem 7. Let k ∈ N, 0 ≤ α < ∞ and 1 ≤ β < ∞.

(a) Let f ∈ Rk(D). Then σ(f) ≤ α if and only if Sk(f) ∈ ∩q>αA
1
k
q . In particular, if

α > 0, then σ(f) = α if and only if Sk(f) ∈ A
1
k
α .

(b) Let f ∈ R1(D). Then σM(f) ≤ β if and only if Sk(f) ∈ ∩q>k(β+1)H
∞
q . In particular,

if β > 1, then σM(f) = β if and only if Sk(f) ∈ H∞k(β+1).

(c) Let g ∈ Rk(C). Then ρ(g) ≤ β if and only if Sk(g) is a polynomial with deg(Sk(g)) ≤
k(β − 1). In particular, ρ(g) = β if and only if Sk(g) is a polynomial with
deg(Sk(g)) = k(β − 1).



8 Martin Chuaqui, Janne Gröhn and Jouni Rättyä

If f ∈ R1(D) ⊂ Rk(D), then log f ′ ∈ H(D). Corollary 8 is obtained from Theo-
rem 7(a)(b) by applying the well-known inequalities

C−1
1 ‖h‖Ap

α
≤ ‖h′‖Ap

p+α
+ |h(0)| ≤ C1‖h‖Ap

α
,

C−1
2 ‖h‖H∞

α
≤ ‖h′‖H∞

α+1
+ |h(0)| ≤ C2‖h‖H∞

α
,

valid for all h ∈ H(D) and for some C1 > 0, depending only on p and α, and C2 > 0,
depending only on α.

Corollary 8. Let f ∈ R1(D), 0 ≤ α < ∞ and 1 ≤ β < ∞. Then σ(f) ≤ α if and only
if log f ′ ∈ ∩q>α−1A

1
q. In particular, if α > 0, then σ(f) = α if and only if log f ′ ∈ A1

α−1.
Similarly, σM(f) ≤ β if and only if log f ′ ∈ ∩q>βH∞

q . In particular, if β > 1, then
σM(f) = β if and only if log f ′ ∈ H∞β .

Before analyzing Theorem 7(c), we give an example and shortly discuss conformal
maps of D.

Example 4. Let f(z) = exp(1/(1−z)γ), where γ > 1. Then f ∈ R1(D) and σ(f) = γ−1.
Moreover,

log f ′(z) =
1

(1− z)γ
+ log

γ

(1− z)γ+1
,

f ′′(z)

f ′(z)
=

γ

(1− z)γ+1
+

γ + 1

1− z
,

Sf (z) = − γ2

2(1− z)2γ+2
− γ2 − 1

2(1− z)2
,

and hence Sk(f) ∈ A
1
k
γ−1, k = 1, 2, and log f ′ ∈ A1

γ−2 as Theorem 7 and Corollary 8 claim.

If f is a conformal map of D onto the inner domain of a Jordan curve C, then geometric
properties of C are related to analytic properties of log f ′ [18]. Moreover, several analytic
properties of log f ′ (or f ′′/f ′) can been expressed in terms of the Schwarzian derivative Sf

[1, 4, 16, 17, 18]. For example, log f ′ belongs to the classical Dirichlet space D (functions
in H(D) with square integrable derivative) if and only if Sf ∈ A2

2 [17]. If Sf ∈ A2
2, then

|Sf (z)| is of the growth o(1/(1− |z|2)2), yet all conformal maps f satisfy the well-known
inequality |Sf (z)| ≤ 6/(1−|z|2)2 for all z ∈ D. It is obvious that the Schwarzian derivative
of a function in R1 may have a much larger growth as the function f in Example 4 shows.
It is also worth noticing that the methods of proof for conformal maps do not seem to
yield Theorem 7(a)(b).

To see that the cases (a) and (c) of Theorem 7 are analogous, one only needs to notice
that an entire function g is a polynomial with deg(g) ≤ k(β − 1) if and only if

∫

C\D
|g(z)| 1k |z|−(β+1+ε) dm(z) < ∞

for all ε > 0.
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All values of β are not permitted in the case of equality ρ(g) = β in Theorem 7(c).
Namely, if g ∈ Rk(C) is not rational, then ρ(g) ∈ {1 + n

k
: n = 0, 1, . . .}. This is not a

surprise, because the growth of g is determined via g′ = h−k by a solution h of (1.3) with
B entire. As ρ(h) = ρ(g′) = ρ(g) < ∞, logarithmic derivative estimates (see Section 5.3
for similar reasonings) show that B must be a polynomial, and therefore the possible
orders of solutions h are restricted to the values 1+ n

k
, n = 0, 1, . . ., see [9] for a proof and

a further discussion on the subject.

Oscillation of solutions of h(k) + B(z) h = 0

Theorems 6 and 7 can be used to deduce known results on the oscillation of solutions of

h(k) + B(z) h = 0. (1.8)

To give the precise statement, definitions are needed. Let {zn} and {wn} be the zeros of
f ∈ H(D) and g ∈ H(C), respectively. The exponents of convergence for the zeros of f
and of g are defined as

λ(f) := inf

{
α > 0 :

∞∑
n=1

(1− |zn|)α+1 < ∞
}

and µ(g) := inf

{
β > 0 :

∞∑
n=1

|wn|−β < ∞
}

.

Theorem B. Let α ≥ 0 and β ≥ 1.

(a) Let B ∈ H(D). Then all solutions h of (1.8) satisfy λ(h) ≤ α if and only if

B ∈ ∩q>αA
1
k
q .

(b) Let B ∈ H(C). Then all solutions h of (1.8) satisfy µ(h) ≤ β if and only if B is a
polynomial with deg(B) ≤ k(β − 1).

Theorem B is a special case of results in [10], where the oscillation of solutions of
linear differential equation (1.7) is studied by using a representation of analytic coefficients
B0, . . . , Bk−2 in terms of ratios of linearly independent solutions [13]. Therefore, to avoid
unnecessary repetition, we merely sketch a proof of (a), and refer to [10] for a further
discussion on the topic.

It is well known that λ(h) ≤ σ(h) for all h ∈ H(D). Therefore one implication in
Theorem B(a) follows by the growth estimates for the solutions of (1.8), see Lemma D(a)
below. Conversely, let B ∈ H(D) and assume all solutions h of (1.8) satisfy λ(h) ≤ α ∈
[0,∞). Let {h1, . . . , hk} be a solution base of (1.8). Then an application of the second
main theorem of Nevanlinna shows that σ(hj/hk) ≤ α for all j = 1, . . . , k − 1, see [10]
for details. It follows that every primitive function f of the Wronskian determinant (1.6)
satisfies σ(f) ≤ α. But now Theorem 6 states f ∈ Rk and Sk(f) = kB, from which

Theorem 7 yields B ∈ ∩q>αA
1
k
q as claimed.
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2. Proofs of Lemmas 2-5

2.1. Proof of Lemma 2

Assume first f ∈ R2, that is, f ∈ M and there exists h ∈ H such that f ′ = 1/h2.
Then f ′ is clearly non-vanishing. Moreover, if h does not vanish at a point α, then f ′

is analytic at α, and so is f . If h has a zero at a point α, then h(α) = h′′(α) = 0 and
h′(α) 6= 0 by Definition 1. Therefore, in a neighborhood of α, the function h is of the
form h(z) = a1(z − α) + (z − α)3H(z), where a1 6= 0 and H is analytic. Hence

f ′(z) =
1

a2
1(z − α)2

(
1

1 + 2(z − α)2H(z)a−1
1 + (z − α)4(H(z)a−1)2

)
,

and it follows that

f(z) = − 1

a2
1

(z − α)−1 − 2 H(α)

a3
1

(z − α)− H ′(α)

a3
1

(z − α)2 − . . . .

Therefore f has simple poles at zeros of h and is analytic elsewhere. Thus f ∈ R.
Conversely, assume f ∈ R, and define B := 1

2
S2(f). According to Theorem A,

equation (1.2) admits linearly independent solutions h1 and h2 such that f = h1/h2.
Further, the Wronskian determinant W (h1, h2) = h′1h2−h1h

′
2 is a non-zero constant, and

hence

f ′ =
(

h1

h2

)′
=

h′1h2 − h1h
′
2

h2
2

=
W (h1, h2)

h2
2

=
1

h2
,

where h := h2/
√

W (h1, h2) is a well-defined analytic function. As h is a solution of (1.2),
f satisfies conditions (i) and (ii) in Definition 1, see Example 1. Thus f ∈ R2.

2.2. Proof of Lemma 3

Let f ∈M such that f ′ = 1/hn for some h ∈ H and n ∈ N. We claim that

Sk+1,n(f) = −n
h(k)

h
(2.1)

for all k ∈ N. As Sk(f) = Sk+1,k(f), the assertion in Lemma 3 follows by taking n = k
in (2.1). To prove (2.1), note first that

f ′ =
1

hn
, f ′′ = −n

h′

hn+1
and S2,n(f) =

f ′′

f ′
= −n

h′

h
,

and so the identity (2.1) is valid for k = 1. Assume now (2.1) for k = m ≥ 1. Then

Sm+2,n(f) =
(
Sm+1,n(f)

)′ − 1

n

f ′′

f ′
Sm+1,n(f)

=

(
−n

h(m)

h

)′
− 1

n

(
−n

h′

h

)(
−n

h(m)

h

)

= −n
h(m+1)h− h′h(m)

h2
− n

h′h(m)

h2
= −n

h(m+1)

h
,

and therefore (2.1) is valid for k = m + 1. The identity (2.1) follows by induction.
Moreover, (1.4) shows that any constant multiple of (f ′)−1/k is a solution of (1.5).
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2.3. Proof of Lemma 4

The following auxiliary result is needed.

Lemma 9. If f ∈M and Sk(f) ∈ H, then all poles of f ′ are of order lk, where l ∈ N.

Proof. Let f ∈ M and Sk(f) ∈ H. Assume on the contrary that f ′ has a pole of order
p at a point α, and k is not a divisor of p. Then there exist R > 0 and a non-vanishing
H ∈ H(D(α,R)) such that f ′(z) = H(z) (z − α)−p in the annulus 0 < |z − α| < R. For a
fixed branch, define the non-vanishing K0 ∈ H(D(α, R)) by K0(z) := (H(z))−1/k. Then,
for a fixed branch, the function

h(z) :=
(z − α)p/k

(H(z))1/k
= (z − α)p/k K0(z)

satisfies h ∈ H(Ω) for Ω :=
{
z ∈ D(α, R) : Re z > Re α

}
. Therefore

f ′(z) =
H(z)

(z − α)p
=

1

(z − α)p Kk
0 (z)

=
1

hk(z)
, z ∈ Ω,

and hence Sk(f) = −kh(k)/h in Ω by Lemma 3.
Differentiation gives

h′(z) = (z − α)p/k−1K1(z),

where K1(z) := p
k
K0(z) + (z − α)K ′

0(z) satisfies K1 ∈ H(D(α, R)) and K1(α) 6= 0. After
k − 1 more differentiations, we obtain

h(k)(z) := (z − α)p/k−k Kk(z),

where Kk ∈ H(D(α,R)) and Kk(α) 6= 0. Therefore

Sk(f)(z) = −k
h(k)(z)

h(z)
= − k

(z − α)k

Kk(z)

K0(z)
, z ∈ Ω,

where Kk/K0 ∈ H(D(α, R)) and Kk(α)/K0(α) 6= 0. It follows that Sk(f) does not remain
bounded as z → α in Ω. This contradicts the assumption Sk(f) ∈ H, and the assertion
follows. 2

We proceed to prove Lemma 4. If f ′ = (Pk−1)
−k, where Pk−1 is a polynomial with

deg(Pk−1) ≤ k − 1, then Lemma 3 yields Sk(f) = −k P
(k)
k−1/Pk−1 ≡ 0.

Conversely, assume

Sk(f) = Sk+1,k(f) =
(
Sk,k(f)

)′ − 1

k

f ′′

f ′
Sk,k(f) ≡ 0.

By solving this equation we obtain Sk,k(f) = P0 (f ′)
1
k , where P0 ∈ C. Hence

Sk,k(f) =
(
Sk−1,k(f)

)′ − 1

k

f ′′

f ′
Sk−1,k(f) ≡ P0 (f ′)

1
k ,
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which in turn gives Sk−1,k(f) = (P0z + C)(f ′)
1
k =: P1 (f ′)

1
k , where C ∈ C and P1 is a

polynomial with deg(P1) ≤ 1. Continuing in this fashion we obtain

S2,k(f) =
f ′′

f ′
≡ Pk−2 (f ′)

1
k ,

where Pk−2 is a polynomial with deg(Pk−2) ≤ k − 2. Since f ′ is non-vanishing by the
assumption, Lemma 9 implies that there exists h ∈ H, h 6≡ 0, such that f ′ = h−k. It
follows that

−k
h′

h
≡ Pk−2

h
,

and hence h′ = −Pk−2/k outside of zeros of h. Because both h and Pk−2 are analytic, we
deduce f ′ = h−k = (Pk−1)

−k, where Pk−1 is a polynomial with deg(Pk−1) ≤ k − 1.

2.4. Proof of Lemma 5

Claims (i) =⇒ (ii) and (i) =⇒ (iii) follow from Lemma 3. Namely, if f ∈ Rk, then
f ′ is of the form f ′ = 1/hk, where h ∈ H and at each l-fold zero of h, h(k) has at least
l-fold zero. Identity (1.4) implies Sk(f) ∈ H, and (1.5) shows that h is a solution of (1.3),
where B = 1

k
Sk(f) ∈ H.

Since (iii) =⇒ (i) is proved in Example 1, it remains to consider the claim (ii) =⇒
(iii). To see this, let f ∈M such that f ′ is non-vanishing and Sk(f) ∈ H. Then Lemma 9
shows that f ′ can be written in the form f ′ = h−k, where h ∈ H. But now h is a solution
of (1.5) by Lemma 3, and thus f ∈ Rk.

3. Proof of the assertion in Example 3

If f ′ is analytic at α, then, for a fixed branch, h = (f ′)−1/k is analytic and non-vanishing
in a neighborhood of α. Lemma 3 implies that Sk(f) = −kh(k)/h is analytic at α. If f ′

has a pole at α, then the Laurent series of f ′ in a neighborhood of α is of the form

f ′(z) =
c−lk

(z − α)lk
+

∞∑

j=−lk+k

cj(z − α)j =:
c−lk

(z − α)lk
+ H(z),

where c−lk 6= 0 and l ∈ {1, 2, . . . , k − 1}. Therefore f ′ = 1/hk, where

h(z) =
(z − α)l

(c−lk + (z − α)lkH(z))1/k (3.1)

is analytic at α. We may write

(
c−lk + (z − α)lkH(z)

)1/k
= a0 + a1(z − α) + a2(z − α)2 + · · · =: a0 + A(z),

and hence

c−lk + (z − α)lkH(z) = ak
0 + kak−1

0 A(z) + · · ·+ ka0A
k−1(z) + Ak(z).
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From this equality, it follows that a0 = c
1
k
−lk and

A(z) = ak(z − α)k + ak+1(z − α)k+1 + · · · .

Now
1

(c−lk + (z − α)lkH(z))1/k
=

1

a0 + A(z)
=

∞∑
j=0

bj(z − α)j,

where b0 = a−1
0 and bj = −b0

∑j
n=1 anbj−n. Therefore bj = 0 for all j = 1, . . . , k − 1, and

hence (3.1) implies

h(z) = b0(z − α)l + bk(z − α)l+k + bk+1(z − α)l+k+1 + · · · .

As l ≤ k − 1 by the assumption, differentiation gives

h(k)(z) = dl(z − α)l + dl−1(z − α)l+1 + · · · ,

from which (3.1) yields

h(k)(z)

h(z)
= (a0 + A(z))

(
dl + dl+1(z − α) + dl+2(z − α)2 + · · · ) .

Therefore h(k)/h has a removable singularity at α, and so does Sk(f) by Lemma 3. Hence
Sk(f) ∈ H, and Lemma 5 yields f ∈ Rk.

4. Proof of Theorem 6

Let first {h1, . . . , hk} be a solution base of (1.3), where B ∈ H. By [15, Proposi-
tion 1.4.3(e)] the Wronskian determinant (1.6) is of the form

f ′ = W

((
h1

hk

)′
,

(
h2

hk

)′
, . . . ,

(
hk−1

hk

)′ )
=

1

hk
k

W (h1, h2, . . . , hk) =
C

hk
k

=

(
hk

C1/k

)−k

,

where C ∈ C \ {0}. But now f ∈ Rk by Lemma 5, and

Sk(f) = −k
hk

k

hk

= k B

by Lemma 3 since hk is a solution of (1.3).
Conversely, let f ∈ Rk and B = 1

k
Sk(f). Then B ∈ H by Lemma 5, and hk := (f ′)−1/k

is a solution of (1.3) by Lemma 3. Let {h1, . . . , hk} be a solution base of (1.3) with the
normalization W (h1, h2, . . . , hk) = 1. According to [15, Proposition 1.4.3(e)],

W

((
h1

hk

)′
,

(
h2

hk

)′
, . . . ,

(
hk−1

hk

)′ )
=

1

hk
k

W (h1, h2, . . . , hk) =
1

hk
k

=
1

((f ′)−1/k)
k

= f ′,

which completes the proof.
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5. Proof of Theorem 7

We begin with the following lemma which contains different logarithmic derivative esti-
mates needed when proving the different cases of Theorem 7. For proofs of these estimates,
see [6, 7, 8]. Recall that the upper density of a measurable set E ⊂ [0, 1) is defined as

D(E) = lim sup
r→1−

m(E ∩ [r, 1))

1− r
,

where m(F ) denotes the Lebesgue measure of the set F .

Lemma C. Let k and j be integers satisfying k > j ≥ 0. Let f ∈ M(D) such that
σ(f) < ∞ and f (j) 6≡ 0, and let g ∈M(C) such that ρ(g) < ∞ and g(j) 6≡ 0.

(a) Then ∫

D

∣∣∣∣
f (k)(z)

f (j)(z)

∣∣∣∣
1

k−j

(1− |z|2)σ(f)+ε dm(z) < ∞

for all ε > 0.

(b) For given ε > 0 and 0 < δ < 1, there exists a set E ⊂ [0, 1) satisfying D(E) < δ
such that ∣∣∣∣

f (k)(z)

f (j)(z)

∣∣∣∣ ≤
(

1

1− |z|
)(max{σM (f),1}+1)(k−j)+ε

for all z ∈ D with |z| 6∈ E.

(c) For a given ε > 0 there exists a set E ⊂ (1,∞) satisfying
∫

E
dr
r

< ∞ such that
∣∣∣∣
g(k)(z)

g(j)(z)

∣∣∣∣ ≤ |z|(k−j)(ρ(g)−1+ε)

for all z ∈ C with |z| 6∈ E ∪ [0, 1].

Another auxiliary result needed concerns finite order solutions of the linear differential
equation

h(k) + Bk−1(z)h(k−1) + · · ·+ B1(z)h′ + B0(z)h = 0 (5.1)

with analytic coefficients B0, . . . , Bk−1. The following lemma follows at once by [11,
Theorem 4.1]. For earlier results and further studies on the topic, see [6, 7, 9, 12, 14, 15, 20]
and the references therein.

Lemma D. Let 0 ≤ α < ∞ and 1 ≤ β < ∞.

(a) If Bj ∈
⋂

q>α A
1

k−j
q for all j = 0, . . . , k − 1, then all solutions f of (5.1) satisfy

σ(f) ≤ α.

(b) If Bj ∈
⋂

q>(k−j)(β+1) H∞
q for all j = 0, . . . , k−1, then all solutions f of (5.1) satisfy

σM(f) ≤ β.

(c) If Bj is a polynomial with deg(Bj) ≤ (k− j)(β− 1) for all j = 0, . . . , k− 1, then all
solutions f of (5.1) satisfy ρ(f) ≤ β.



Generalized Schwarzian derivatives and differential equations 15

5.1. Proof of Theorem 7(a)

Let first f ∈ Rk(D) such that σ(f) ≤ α ∈ [0,∞). Then f ′ can be written in the form
f ′ = 1/hk, where h ∈ H(D) admits the properties (i) and (ii) of Definition 1. Moreover,
h = (f ′)−1/k satisfies σ(h) ≤ α. Lemma 3 and Lemma C(a) now yield

∫

D
|Sk(f)(z)| 1k (1− |z|2)α+ε dm(z) = k

1
k

∫

D

∣∣∣∣
h(k)(z)

h(z)

∣∣∣∣
1
k

(1− |z|2)α+ε dm(z) < ∞

for all ε > 0. As Sk(f) ∈ H(D) by Lemma 5, Sk(f) ∈ ∩q>αA
1
k
q .

Conversely, if Sk(f) ∈ ∩q>αA
1
k
q , then all solutions h of

h(k) +
1

k
Sk(f)(z) h = 0 (5.2)

are analytic and satisfy σ(h) ≤ α by Lemma D(a). As h = (f ′)−1/k is one of the solutions
by Lemma 3, this yields σ(f) = σ((f ′)−1/k) ≤ α.

Let now α > 0, and let f ∈ Rk(D) such that σ(f) = α. Then Sk(f) ∈ ∩q>αA
1
k
q by the

proof above. If Sk(f) ∈ A
1
k
α−ε for some ε > 0, then all solutions h of (5.2) are analytic

and satisfy σ(h) ≤ α − ε by Lemma D(a). Since h = (f ′)−1/k is one of the solutions by
Lemma 3, this yields α = σ(f) = σ((f ′)−1/k) ≤ α− ε. This is clearly a contradiction, and

thus Sk(f) ∈ A
1
k
α .

Conversely, if Sk(f) ∈ A
1
k
α , then the proof above shows that σ(f) ≤ α. Moreover, if

σ(f) < α, then Sk(f) ∈ A
1
k
α−ε for some ε > 0 by Lemma C(a). This clearly contradicts

the assumption Sk(f) ∈ A
1
k
α , and thus σ(f) = α.

5.2. Proof of Theorem 7(b)

We will need the following auxiliary result [7, Lemma 4.1] to deal with the exceptional
set which appears in Lemma C(b).

Lemma E. Let B ∈ H∞α for some α ∈ (0,∞). For given ε > 0 and δ ∈ (0, 1), there
exists a set F ⊂ [0, 1) with D(F ) ≥ δ such that

lim inf
r→1−

r∈F

log+ M(r, B)

− log(1− r)
≥ α− ε.

To prove Theorem 7(b), let first f ∈ R1(D) such that σM(f) ≤ β ∈ [1,∞), and let
ε > 0. Then for given k ∈ N, f ′ can be written in the form f ′ = 1/hk, where h ∈ H(D)
is non-vanishing, and σM(f ′) ≤ β. It follows that

∣∣Re
(
log+ f ′(reiθ)

)∣∣ = O
(
(1− r)−β−ε

)
.

Since log f ′ ∈ H(D), inequality (1.18) in [5] now yields

log M (r, 1/f ′) ≤ M (r, log 1/f ′) = M (r, log f ′) = O

(
1

(1− r)β+ε

)
.
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Hence σM(1/f ′) ≤ β, and

σM(h) = σM((f ′)−1/k) = σM(1/f ′) ≤ β.

By Lemma 3 and Lemma C(b), for given ε > 0 and 0 < δ < 1/2, there exists a set
E ⊂ [0, 1) satisfying D(E) < δ such that

|Sk(f)(z)| = k

∣∣∣∣
h(k)(z)

h(z)

∣∣∣∣ ≤
(

1

1− |z|
)k(max{σM (h),1}+1)+ε

≤
(

1

1− |z|
)k(β+1)+ε

(5.3)

for all z ∈ D with |z| 6∈ E. Moreover, Sk(f) ∈ H(D) by Lemma 5. Assume on the contrary
that Sk(f) ∈ H∞α for some α > k(β + 1). Fix ε > 0 such that 2ε < α − k(β + 1). By
Lemma E there exists a set F ⊂ [0, 1) satisfying D(F ) ≥ 2δ such that

lim inf
r→1−

r∈F

log+ M(r, Sk(f))

− log(1− r)
≥ α− ε. (5.4)

Combining (5.3) and (5.4) we find {rn} ⊂ F \ E with rn → 1−, as n →∞, such that

(
1

1− rn

)α−ε

≤ M(rn, Sk(f)) ≤
(

1

1− rn

)k(β+1)+ε

, n ∈ N.

Since α−ε > k(β +1)+ε, this yields a contradiction, and therefore Sk(f) ∈ H∞α for some
α ≤ k(β + 1). Thus Sk(f) ∈ ∩q>k(β+1)H

∞
q .

Conversely, if Sk(f) ∈ ∩q>k(β+1)H
∞
q , then all solutions h of (5.2) are analytic and

satisfy σM(h) ≤ β by Lemma D(b). As h = (f ′)−1/k is one of the solutions by Lemma 3,
this yields

σM(1/f ′) = σM((f ′)−1/k) = σM(h) ≤ β.

By an argument similar to the one given in the beginning of the proof of Theorem 7(b),
we see that σM(f) = σM(f ′) ≤ β. The assertion on the case of equality can be proved by
following the corresponding reasoning in the proof of Theorem 7(a).

5.3. Proof of Theorem 7(c)

We will need one more auxiliary result [2, 8].

Lemma F. Let ϕ and ψ be monotone increasing functions on [0,∞) such that ϕ(r) ≤
ψ(r) for all r 6∈ E ∪ [0, 1], where E ⊂ (1,∞) satisfies

∫
E

dr
r

< ∞. Then, for any γ > 1
there exists rγ > 0 such that ϕ(r) ≤ ψ(γr) for all r ∈ [rγ,∞).

To prove Theorem 7(c), let first g ∈ Rk(C) such that ρ(g) ≤ β ∈ [1,∞). Then g′ can
be written in the form g′ = 1/hk, where h ∈ H(C) admits the properties (i) and (ii) of
Definition 1. Moreover, h = (g′)−1/k satisfies ρ(h) ≤ β. Lemma 3 and Lemma C(c) now
yield

|Sk(g)(z)| = k

∣∣∣∣
h(k)(z)

h(z)

∣∣∣∣ ≤ |z|k(β−1+ε),
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provided |z| 6∈ E ∪ [0, 1], where
∫

E
dr
r

< ∞. Lemma F now gives M(r, Sk(g)) ≤ rk(β−1+2ε)

for all r sufficiently large. Since Sk(g) ∈ H(C) by Lemma 5, this means that Sk(g) is a
polynomial with deg(Sk(g)) ≤ k(β − 1).

Conversely, if Sk(g) is a polynomial with deg(Sk(g)) ≤ k(β − 1), then all solutions h
of

h(k) +
1

k
Sk(g)(z)h = 0

are entire and satisfy ρ(h) ≤ β by Lemma D(c). As h = (g′)−1/k is one of the solutions
by Lemma 3, this yields ρ(g) = ρ((g′)−1/k) ≤ β.

The assertion on the case of equality can be proved by following the corresponding
reasoning in the proof of Theorem 7(a).
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dation RNP HCAA; Fondecyt Grant 1071019 and Mecesup Grant PUC 0711.

References

[1] K. Astala and M. Zinsmeister, Teichmüller spaces and BMOA, Math. Ann. 289 (1991), no. 4, 613–
625.

[2] S. Bank, A general theorem concerning the growth of solutions of first-order algebraic differential
equations, Compositio Math. 25 (1972), no. 1, 61–70.

[3] D. Bertilsson, Coefficient estimates for negative powers of the derivative of univalent functions. Ark.
Mat. 36 (1998), no. 2, 255–273.

[4] C. J. Bishop and P. W. Jones, Harmonic measure, L2 estimates and the Schwarzian derivative, J.
Anal. Math. 62 (1994), 77–113.

[5] M. L. Cartwright, On analytic functions regular in the unit circle (II), Quart. J. on Math. 4 (1933),
246–257.
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